
A general theory of phase-space quasiprobability distributions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 L9

(http://iopscience.iop.org/0305-4470/31/1/002)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 02/06/2010 at 06:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) L9–L17. Printed in the UK PII: S0305-4470(98)87645-2
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A general theory of phase-space quasiprobability
distributions
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Received 16 September 1997, in final form 30 October 1997

Abstract. We present a general theory of quasiprobability distributions on phase spaces
of quantum systems whose dynamical symmetry groups are (finite-dimensional) Lie groups.
The family of distributions on a phase space is postulated to satisfy the Stratonovich–Weyl
correspondence with a generalized traciality condition. The corresponding family of the
Stratonovich–Weyl kernels is constructed explicitly. In the presented theory we use the concept
of generalized coherent states, that brings physical insight into the mathematical formalism.

Since the introduction of the Wigner function in 1932 [1], it has found numerous physical
applications. Perhaps the most important is the phase-space formulation of quantum
mechanics that has its origins in the early work of Moyal [2]. In this formulation, a function
on phase space is associated with an operator on Hilbert space, opening the way to formally
representing quantum mechanics as a statistical theory on classical phase space. Various
aspects of the phase-space formalism for basic quantum systems have been developed by
a number of authors (e.g. see [3–16]). More extensive lists of the literature on the subject
can be found in reviews [17–21].

Besides the Wigner functionW , other phase-space functions have been considered in
the literature. In particular, the HusimiQ function and the Glauber–SudarshanP function
have found extensive applications in quantum optics. Cahill and Glauber [4] have shown
that there exists a whole family of phase-space functions parametrized by a numbers; the
values+1, 0, and−1 of s correspond to theQ, W , andP functions, respectively. These
phase-space functions are known as quasiprobability distributions (QPDs), as they play in
quantum mechanics a role similar to that of genuine probability distributions in classical
statistical mechanics.

The phase-space formalism has been applied successfully to the description of a spinless
quantum particle and a mode of the quantized radiation field (modelled by a quantum
harmonic oscillator). The corresponding phase space isR2 (or, equivalently, the complex
plane C). A generalization of this description to a set ofN independent particles or
harmonic oscillators in ap-dimensional world is straightforward [21]. A more complicated
problem is the phase-space description of spin. A number of authors have used different
approaches to the construction of the Wigner function for spin [8, 9, 11, 15, 22–27]. The
explicit expressions for theQ, W , andP functions for arbitrary spin were first obtained by
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Agarwal [8], who used the spin coherent-state representation [28–30] and the Fano multipole
operators [31]. V́arilly and Gracia-Bond́ıa [11] have shown that the spin coherent-state
approach is equivalent to a general mathematical formalism based on the Stratonovich–
Weyl (SW) correspondence [3] and on the concept of twisted product [7]. This formalism
has also been generalized [12] to compact semisimple groups.

In this letter we develop a general theory of QPDs on phase spaces of quantum systems
whose dynamical symmetry groups are (finite-dimensional) Lie groups. This theory can be
viewed as a generalization of the Cahill–Glauber QPDs (related to the Heisenberg–Weyl
group) to arbitrary Lie groups. We make clear that the structure of the family of the
phase-space QPDs for a Lie group is determined by the group covariance and the traciality
conditions.

LetG be a Lie group (connected and simply connected, with finite dimensionn), that is
the dynamical symmetry group of a given quantum system. LetT be a unitary irreducible
representation ofG acting on the Hilbert spaceH. By choosing a fixed normalized reference
state|ψ0〉 ∈ H, one can define the system of coherent states{|ψg〉}:

|ψg〉 = T (g)|ψ0〉 g ∈ G. (1)

The isotropy subgroupH ⊂ G consists of all the group elementsh that leave the reference
state invariant up to a phase factor,

T (h)|ψ0〉 = eiφ(h)|ψ0〉 |eiφ(h)| = 1, h ∈ H. (2)

For every elementg ∈ G, there is a decomposition ofg into a product of two group
elements, one inH and the other in the coset spaceX = G/H ,

g = �h g ∈ G,h ∈ H,� ∈ X. (3)

It is clear that group elementsg andg′ with differenth andh′ but with the same� produce
coherent states which differ only by a phase factor:|ψg〉 = eiδ|ψg′ 〉, whereδ = φ(h)−φ(h′).
Therefore, a coherent state|�〉 ≡ |ψ�〉 is determined by a point� = �(g) in the coset
spaceG/H . A very important property is the identity resolution in terms of the coherent
states: ∫

X

dµ(�)|�〉〈�| = I (4)

where dµ(�) is the invariant integration measure onX = G/H , the integration is over the
whole manifoldX, andI is the identity operator onH.

An important class of coherent-state systems corresponds to the coset spacesX = G/H
which are homogeneous Kählerian manifolds. ThenX can be considered as the phase
space of a classical dynamical system. The standard (or maximum-symmetry) systems of
the coherent states correspond to the cases when an ‘extreme’ state of the representation
Hilbert space (e.g., the vacuum state of an oscillator or the lowest/highest spin state) is
chosen as the reference state. This choice of the reference state leads to systems consisting
of states with properties ‘closest to those of classical states’ [30, 32]. In what follows we
will consider the coherent states of maximal symmetry and assume that the phase space
of the quantum system is a homogeneous Kählerian manifoldX = G/H , each point of
which corresponds to a coherent state|�〉. In particular, the Glauber coherent states of
the Heisenberg–Weyl group H3 are defined on the complex planeC = H3/U(1), and the
spin coherent states are defined on the unit sphereS2 = SU(2)/U(1). In the more rigorous
mathematical language of Kirillov’s theory [33], the phase spaceX is the co-adjoint orbit
associated with the unitary irreducible representationT of the groupG on the Hilbert
spaceH.
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The idea of the phase-space formalism is as follows. LetA be an operator onH. Then
A can be mapped by a family of functions (quasiprobability distributions)F

(s)
A (�) onto the

phase spaceX. (The indexs that labels functions in the family will be determined shortly.)
The functionF (s)A (�) is called the SW image ofA, if it satisfies the properties known as
the SW correspondence [3]:

(0) Linearity: A→ F
(s)
A (�) is a one-to-one linear map.

(i) Reality:

F
(s)

A†
(�) = [F (s)A (�)]∗. (5a)

(ii) Standardization:∫
X

dµ(�)F (s)A (�) = TrA. (5b)

(iii) Covariance:

F
(s)
g·A(�) = F (s)A (g−1�) (5c)

whereg · A ≡ T (g)AT (g)−1.
(iv) Traciality:∫

X

dµ(�)F (s)A (�)F
(−s)
B (�) = Tr(AB). (5d)

These conditions have a clear physical meaning. The linearity and the traciality conditions
are related to the statistical interpretation of the theory. IfB is the density matrix, then the
traciality condition (5d) assures that the statistical average of the phase-space distributionFA
coincides with the quantum expectation value of the operatorA. O’Connell and Wigner [34]
have shown that the traciality condition for density matrices of a spinless quantum particle
(there it appears as an overlap relation) is necessary for the uniqueness of the definition of
the Wigner function. It has also been shown [12] that the traciality condition is necessary
for the uniqueness of the definition of the symbol calculus (twisted or ‘star’ products) of the
phase-space functions and for the validity of the related non-commutative Fourier analysis.
Equation (5d) is actually a generalization of the usual traciality condition [3, 11, 12], as it
holds for anys and not only for the Wigner cases = 0. The reality condition (5a) means
that if A is self-adjoint, thenF (s)A (�) is real. The condition (5b) is a natural normalization,
which means that the image of the identity operatorI is the constant function 1. The
covariance condition (5c) means that the phase-space formulation must explicitly express
the symmetry of the system.

The linearity is taken into account, if we implement the mapA → F
(s)
A (�) by the

generalized Weyl rule

F
(s)
A (�) = Tr[A1(s)(�)] (6)

where {1(s)(�)} is a family (labelled bys) of operator-valued functions on the phase
spaceX. These operators are referred to as the SW kernels. The generalized traciality
condition (5d) is taken into account if we define the inverse of the generalized Weyl rule
(6) as

A =
∫
X

dµ(�)F (s)A (�)1(−s)(�). (7)

Now, the conditions (5a)–(5c) of the SW correspondence forF (s)A (�) can be translated into
the following conditions on the SW kernel1(s)(�):

(i) 1(s)(�) = [1(s)(�)]† ∀� ∈ X. (8a)
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(ii)
∫
X

dµ(�)1(s)(�) = I. (8b)

(iii ) 1(s)(g�) = T (g)1(s)(�)T (g)−1. (8c)

Substituting the inverted maps (7) forA andB into the generalized traciality condition
(5d), we obtain the relation between the QPDs with different values of the indexs:

F
(s)
A (�) =

∫
X

dµ(�′)Ks,s ′(�,�′)F
(s ′)
A (�′) (9)

Ks,s ′(�,�
′) ≡ Tr[1(s)(�)1(−s ′)(�′)]. (10)

If we take in equation (9)s = s ′ and take into account the arbitrariness ofA, we obtain the
following relation

1(s)(�) =
∫
X

dµ(�′)K(�,�′)1(s)(�′) (11)

where the function

K(�,�′) = Tr[1(s)(�)1(−s)(�′)] (12)

behaves like the delta function on the manifoldX.
Now, our problem is to find the explicit form of the SW kernel1(s)(�) that satisfies

the conditions (8a)–(8c) and (11). We start by considering the Hilbert spaceL2(X,µ) of
square-integrable functionsu(�) on X with the invariant measure dµ. The representation
T of the Lie groupG on L2(X,µ) is defined as

T (g)u(�) = u(g−1�). (13)

The eigenfunctionsYν(�) of the Laplace–Beltrami operator [35] form a complete
orthonormal basis inL2(X,µ):∑

ν

Y ∗ν (�)Yν(�
′) = δ(�−�′) (14a)∫

X

dµ(�)Y ∗ν (�)Yν ′(�) = δνν ′ . (14b)

The functionsYν(�) are called the harmonic functions, andδ(�−�′) is the delta function
in X with respect to the measure dµ. (The indexν is multiple; it has one discrete part, while
the other part is discrete for compact manifolds and continuous for non-compact manifolds.
In the latter case the summation overν includes an integration with the Plancherel measure
and the symbolδνν ′ includes some Dirac delta function. For more details see [35]. For
conciseness, we omit these details in our formulae.) The eigenfunctionsYν(�) are linear
combinations of matrix elementsTνν ′(g). Therefore, the transformation rule for the harmonic
functions is [35]

T (g)Yν(�) = Yν(g−1�) =
∑
ν ′
Tν ′ν(g)Yν ′(�). (15)

The function |〈�|�′〉|2 is symmetric in� and �′. Therefore, its expansion in the
orthonormal basis must be of the form

|〈�|�′〉|2 =
∑
ν

τνY
∗
ν (�)Yν(�

′) =
∑
ν

τνY
∗
ν (�

′)Yν(�) (16)

whereτν are real positive coefficients. Since|〈�|�′〉|2 is real andY ∗ν (�) = eiφ(ν)Yν̃(�),
the coefficientsτν must be invariant under this index transformation:τν = τν̃ . Since
〈�|�′〉 = 〈g�|g�′〉, the coefficientsτν must be invariant under the index transformation
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of equation (15):τν = τν ′ for the discrete part ofν and dρ(ν)τ (ν) = dρ(ν ′)τ (ν ′) for the
continuous part ofν, where dρ(ν) is the Plancherel measure.

Let us now define the set of operators{Dν} onH:

Dν ≡ ων
∫
X

dµ(�)Yν(�)|�〉〈�| (17)

whereων are real coefficients to be determined from the normalization condition. Using
expression (16), we obtain the orthogonality condition

Tr(DνD
†
ν ′) = (τνω2

ν)δνν ′ . (18)

The proper normalization is then obtained by taking

ω2
ν = 1/τν. (19)

Note thatων is defined only up to a sign,ων = ±τ−1/2
ν , which determines the sign ofDν .

Using (16), we also obtain the relation

ων〈�|Dν |�〉 = Yν(�). (20)

The coefficientsων satisfy the same invariance conditions asτν (up to a choice of the sign).
Therefore,Dν are the tensor operators whose transformation rule is the same as for the
harmonic functionsYν(�):

T (g)DνT (g)
−1 =

∑
ν ′
Tν ′ν(g)Dν ′ . (21)

An operatorA onH can be expanded in the orthonormal basis{Dν}:
A =

∑
ν

Tr(AD†ν)Dν. (22)

Now we are able to find the SW kernel1(s)(�) with all the desired properties.
Specifically, let us define

1(s)(�) ≡
∑
ν

f (s; τν)Y ∗ν (�)Dν. (23)

We will see that the SW kernel (23) is a generalization of the Cahill–Glauber kernel for a
harmonic oscillator [4, 5] and the Agarwal kernel for spin [8]. We show that the construction
of the generalized kernel (23) satisfies the SW correspondence. In equation (23)f (s; τν) is
a function ofτν and of the indexs. We assume thatf possesses the invariance properties of
τν . The reality condition (8a) is then satisfied iff (s; τν) is a real-valued function. Therefore,
we can consider only real values of the indexs. Then it is sufficient to use the convention in
which s ∈ [−1, 1]. (Note that this restriction of the range ofs is not necessary. For example,
Leonhardt and Paul [36] have shown that the Cahill–Glauber QPDs with reals are of
experimental relevance for realistic homodyne measurements. Wünsche [37] has generalized
the Cahill–Glauber QPDs by introducing the complete Gaussian class of quasiprobabilities
characterized by a three-dimensional complex vector parameter. Experimental applications
of these distributions have been recently discussed [38].)

Next we consider the standardization condition (8b). Using the identity resolution (4)
and equation (16), we can write

1= 〈�|�〉 =
∫
X

dµ(�′)|〈�|�′〉|2 =
∑
ν

τνY
∗
ν (�)

∫
X

dµ(�′)Yν(�′). (24)
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Multiplying the left- and right-hand sides of this equation byYν ′(�) and integrating over
dµ(�), we obtain∫

X

dµ(�)Yν(�) = τν
∫
X

dµ(�)Yν(�). (25)

Sinceτν is not identically 1, this relation can be satisfied only if there exists someν0 such
that τν0 = 1 and∫

X

dµ(�)Yν(�) ∝ δνν0. (26)

(As was already mentioned, for non-compact manifolds the symbolδνν ′ actually includes
some Dirac delta functions.) Then the standardization condition (8b) is satisfied if

f (s; 1) = ων0 = ±1 ∀ s. (27)

The covariance condition (8c) is guaranteed by virtue of the transformation rules (15) and
(21) and by the invariance ofτν under these index transformations.

In order to satisfy the relation (11), the functionK(�,�′) of equation (12) must be the
delta function inX with respect to the measure dµ,

K(�,�′) =
∑
ν

Y ∗ν (�)Yν(�
′) = δ(�−�′). (28)

This result is valid if

f (s; τν)f (−s; τν) = 1. (29)

This property is satisfied only by the exponential function, i.e.

f (s; τν) = ±[f (τν)]
s . (30)

Note that the standardization condition (27) then readsf (1) = 1. The double-valuedness
of type (30) was pointed out by V́arilly and Gracia-Bond́ıa [11] who considered the Wigner
function for spin. The exact form of the functionf (τν) can be determined if we define for
s = 1

1(1)(�) ≡ |�〉〈�|. (31)

Then we obtain±f (τν) = 1/ων = ±τ 1/2
ν , i.e.

f (τν) = √τν. (32)

Obviously, the standardization conditionf (1) = 1 is satisfied. This result concludes the
construction of the generalized SW kernel. It is evident that the properties of the kernels
are completely determined by the harmonic functions on the corresponding manifold and
by the coherent states that form this manifold. We also note that the functionKs,s ′(�,�

′)
of equation (10) is given by

Ks,s ′(�,�
′) =

∑
ν

τ (s−s
′)/2

ν Y ∗ν (�)Yν(�
′) (33)

and it clearly satisfies condition (9).
In order to illustrate the general formalism, we show how it works on two basic

examples. First, we consider a spinless quantum particle whose dynamical symmetry group
is the Heisenberg–Weyl group H3. The corresponding nilpotent Lie algebra is spanned by
the basis{a, a†, I }, where a and a† are the boson annihilation and creation operators,
satisfying the canonical commutation relation. The phase space is the complex plane
C = H3/U(1), and the (Glauber) coherent states are|�〉 ≡ |α〉 = D(α)|0〉, α ∈ C,
whereD(α) = exp(αa† − α∗a) is the displacement operator. The invariant measure is
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dµ(�) ≡ π−1d2α, and the corresponding delta function isδ(�−�′) ≡ πδ(2)(α− α′). The
harmonic functions onC are the exponentials:Yν(�) ≡ Yξ (α) ≡ Y (ξ, α) = exp(ξα∗−ξ ∗α).
Hereν ≡ ξ ∈ C with the Plancherel measure dρ(ν) ≡ π−1d2ξ and withδν,ν ′ ≡ πδ(2)(ξ−ξ ′).
We find that the invariant coefficient isτν ≡ τ(ξ) = exp(−|ξ |2), and the tensor operator

Dν ≡ D(ξ) = e|ξ |
2/2
∫
C

d2α

π
eξα

∗−ξ∗α|α〉〈α| (34)

is just the displacement operatorD(ξ) = eξa
†−ξ∗a. Then one obtains the SW kernel:

1(s)(α) =
∫
C

d2ξ

π
e−s|ξ |

2/2eξ
∗α−ξα∗eξa

†−ξ∗a (35)

which is exactly the Cahill–Glauber kernelT (α,−s) [4].
The second example is spin whose dynamical symmetry group is SU(2). The

corresponding simple Lie algebra is spanned by the basis{J+, J−, J3}. The unitary
irreducible representations are labelled by the indexj (j = 0, 1/2, 1, . . .), and the Hilbert
spaceHj is spanned by the orthonormal basis|j,m〉(m = j, j − 1, . . . ,−j). The
phase space is the unit sphereS2 = SU(2)/U(1), and the coherent states are|�〉 ≡
|j ; θ, φ〉 = exp(βJ+ − β∗J−)|j,−j〉, where β = 1

2θ e−iφ . The invariant measure is
dµ(�) ≡ (4π)−1(2j + 1) sinθ dθ dφ, and the corresponding delta function isδ(�−�′) ≡
4π/(2j + 1)δ(cosθ − cosθ ′)δ(φ − φ′). The harmonic functions onS2 are the familiar
spherical harmonics:Yν(�) =

√
4π/(2j + 1)Ylm(θ, φ). Hereν is the double discrete index

{l, m} with l = 0, 1, 2, . . . andm = l, l − 1, . . . ,−l. We find that the invariant coefficient
is independent ofm: τν ≡ τl = 〈j, j ; l, 0|j, j〉2, where〈j1, m1; j2, m2|j,m〉 ≡ Cj1j2j

m1m2m is
the Clebsch–Gordan coefficient. Note thatτl = 0 for l > 2j . The tensor operator is the
well known Fano multipole operator [31], which can be written in the form

Dlm =
√

2l + 1

2j + 1

j∑
r,s=−j

〈j, r; l, m|j, s〉|j, s〉〈j, r|. (36)

Then the SW kernel is

1(s)(θ, φ) =
√

4π

2j + 1

2j∑
l=0

〈j, j ; l, 0|j, j〉s
l∑

m=−l
DlmY

∗
lm(θ, φ), (37)

as was found by Agarwal [8] and by Várilly and Gracia-Bond́ıa [11].
As the explicit form of the SW kernels is known, we can write the generalized QPDs

on the phase space as

F
(s)
A (�) =

∑
ν

τ s/2ν AνYν(�) (38)

Aν ≡ Tr(AD†ν) = ων
∫
X

dµ(�)Y ∗ν (�)〈�|A|�〉. (39)

In particular, fors = 1, we obtain theQ function (Berezin’s covariant symbol [6]):

QA(�) ≡ F (1)A (�) = 〈�|A|�〉. (40)

For s = −1, we obtain theP function (Berezin’s contravariant symbol [6]):

PA(�) ≡ F (−1)
A (�) =

∑
ν

ωνAνYν(�) (41)

A =
∫
X

dµ(�)PA(�)|�〉〈�|. (42)
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The functionsP andQ are counterparts in the traciality condition (5d). Perhaps the most
important QPD corresponds tos = 0, because this function is ‘self-conjugate’ in the sense
that it is the counterpart of itself in the traciality condition (5d). It is natural to call the
QPD with s = 0 the generalized Wigner function:

WA(�) ≡ F (0)A (�) =
∑
ν

AνYν(�). (43)

In conclusion, we have developed the general group-theoretical formalism of the phase-
space QPDs. Starting from a number of physically sensible basic postulates (the SW
correspondence), we have explicitly constructed the SW kernel that implements the bijective
transformation between phase-space functions and Hilbert-space operators for quantum
systems with general Lie-group symmetries. More details and examples of the QPDs on
phase spaces of physical systems will be presented elsewhere.

CB gratefully acknowledges the financial help from the Technion and thanks the Gutwirth
family for the Miriam and Aaron Gutwirth Memorial Fellowship. AM was supported by
the Fund for Promotion of Research at the Technion and by the Technion VPR Fund —
The R and M Rochlin Research Fund.
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